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Transport properties of a nanotube-based transistor
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Abstract. Transport properties of doped nanotube-based double junctions forming a nanotransistor are
investigated within the tight binding formalism. The effects of doping, gate length and gate-source hopping
have been considered. It is found that in addition to the importance of rotational symmetry in determining
transport properties, large gains can be achieved for semiconducting doped tubes.

PACS. 72.20.-i Conductivity phenomena in semiconductors and insulators – 71.20.Tx Fullerenes and
related materials; intercalation compounds

1 Introduction

In this paper, we investigate the conduction properties of
such tubes used as transistors in a setup where a bias is
applied at the two ends playing the role of source and
drain, and the central region submitted to a gate volt-
age by an STM tip for instance. The effect of such a tip
would be to raise or lower the electrostatic potential of
the gate region, thus forming two junctions. The effect of
doping is also investigated as in usual transport measure-
ments, where the tube is deposited on a substrate, and
there can be some charge transfer from substrate to the
tube. In our previous work, we have studied the electronic
and transport properties [1,2] of a single junction within
the self-consistent tight binding formalism. Our purpose
here is to study qualitatively the effects of the gate length
and doping on the conductance as a function of the gate
voltage and show that by tuning the latter, the device can
function as a transistor.

Let us consider an infinitely long nanotube formed of
3 parts: the left semi-infinite part attached to a reservoir
of chemical potential µL, the right semi-infinite part at-
tached to a reservoir of chemical potential µR, and the
central part attached to a gate of potential VG. The thick-
ness of the gate region is variable. For simplicity, we will
assume the left and right parts to be identical, and having
the same chemical potentials. We will be at first interested
in the conductance of this device as a function of the gate
voltage. In a second part, we will consider the left and
right parts as doped. This in effect will shift the chemical
potential, and thus the occupations of the sites. This shift
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is due to charge transfer coming from doping which could
either be dopant atoms inside or outside the nanotube, or
just a contact with a substrate of different work function.

2 Method

The system is described with a tight-binding Hamiltonian
with only one π orbital per atom. This Hamiltonian can
describe reasonably well the band structure of a nanotube
especially near the Fermi level which is zero in this case
since the onsite energy is assumed to be zero, and each
orbital is half-filled;

H =
∑
i

εic
†
iσciσ + t

∑
〈ij〉

c†iσcjσ . (1)

The on-site energy εi will be set to zero in a first place,
except in the gated region where it is equal to VG. In
this case, the Fermi level of the two leads is also equal to
zero. In this work, the effect of self consistency has been
dropped for simplicity as it does not affect qualitatively
the transport phenomena in nanotubes. Our calculations
have shown that the screening is short-ranged with small
oscillations for large steps in the junction potential.

The retarded and advanced Green’s functions (GF) are
defined as:

Gr/a(E) = [E −H± iη]−1, (2)

where η is a small positive number, and + (resp. −) corre-
sponds to the retarded (resp. advanced) GF. This operator
is defined in the space spanned by all the orbitals of the
nanotube. We need, however, its projection in the gated
region. This is defined by a matrix:

Gij(E) = 〈i|G(E)|j〉,
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where i and j are two orbitals belonging to the gated re-
gion. One can show that these matrix elements, can be
obtained from the following relations [3] which can be de-
rived using the partitioning technique:

Gr/a(E) = [E −Hgate −
∑
α

Σr/a
α (E)± iη]−1, (3)

where the self energy matrix Σα, representing the effect
of the lead α on the gate, is defined by:

[Σr/a
α (E)]ij =

∑
kl

Hik [gr/aα (E)]klHlj , (4)

the index α being any of the contacts to the gate (Left
or Right), i and j label two sites of the gate, and k and
l belong to the lead α. g is the GF of the isolated semi-
infinite left or right lead. In practice, it is projected on the
last layer of the lead, and hence it is really a surface GF. It
can be computed separately by iterative methods [4]. The
conductance of the whole system can then be computed
from the Landauer formula derived first for interacting
systems by Meir and Wingreen [5]:

G(E) =
2e2

h
Tr (Gr(E)ΓL(E)Ga(E)ΓR(E)) , (5)

where the transition rate matrix Γ is −2ImΣ. For a large
gate region, the most time consuming part of the program
is the matrix inversion in Eq. (3), which can be made more
efficient (proportional to the length of the gate) for one-
dimensional systems.

3 Results and discussions

We first studied the effect of lead to gate hopping. In the
case of a nanotube gated by an STM, the hopping stays
uniform all along the tube, and therefore this effect does
not occur. In general, however, if one is dealing with a
“quantum dot”, the strength of hopping will affect the
conductance since the latter is proportional to the fourth
power of lead-dot hoppings (see Eq. (5)). It was observed
that a smaller hopping would reduce the conductance to
very small values except for energies exactly equal to the
dot’s eigenvalues where there would be resonant trans-
mission. With weak couplings to the leads, one could thus
perform spectroscopy of the energy levels of the dot.

We next set ε = 0 for the left and right leads, and
ε = VG in the gated region, and compute the conductance
as a function of the gate voltage for gates of various lengths
in a (4, 4) armchair nanotube. For a semiconducting zigzag
nanotube, the density of states (DOS), and therefore the
conductance at the Fermi energy EF = 0 is always zero.
The results for gates formed of 2, 4 and 8 layers of carbon
rings in a (4, 4) armchair tube are displayed in Fig. 1.

One notices that the number of oscillations increases
with the length of the gated region. The peaks can be
understood in terms of resonant transmission through the
gated region. Every time the Fermi energy is such that the
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Fig. 1. Conductance of a 2 layer, a 4 layer and a 8 layer gated
region versus the applied gate voltage in a (4, 4) armchair nan-
otube. The curve is even in VG since the DOS of the nanotube
is even in energy.

width of the gate is a multiple of the incoming electron
wavelength, there is resonant transmission (transmission
probability = 1) and the conductance peaks at that en-
ergy. The number of peaks naturally increases as a func-
tion of the length of the gate.

The other important feature noticeable in this curve
is the reduction of the conductance envelope from 2 to 1
as the gate voltage becomes larger than the hopping inte-
gral t. This phenomenon is due to the rotational symmetry
of the tube. In the gated region, one can assume that the
local DOS is shifted with respect to the leads by VG. In this
case, for VG > t the number of “s” channels at energy 0
is decreased from 2 to 1, as the number of right moving
s channels of energy 0 in the leads is equal to 2. There-
fore, the conductance is reduced by one (in units of 2e2/h)
as VG becomes larger than t. This phenomenon was also
observed in the study of nonlinear transport in single n-p
junctions [2], and is solely due to the rotational symmetry
selection rule. It is anticipated that a small asymmetry
in the onsite energies due to a contact with a substrate
for example will not affect this change in the conductance
much, since that would only slightly change the shape of
the “s” states and not their phase.

We then focus our attention on the doped case, i.e.
consider a non-zero chemical potential, and perform the
same calculation of the conductance. This study can also
be performed for zigzag nanotubes since there would be
a non-zero DOS at the Fermi level in the two leads. The
results are summarized in Fig. 2 for the (4, 4) armchair,
and Fig. 3 for the (7, 0) zigzag tube.

One can notice a large change in the conductance of
both devices for some values of the gate voltage. This effect
is more pronounced in semiconducting tubes as their DOS
is zero in some energy range. The conductance changes by
a factor of 30 as VG goes from 0 to 0.95 hopping in the
high doping limit (EF = 0.99) and even by a much larger
factor of 440 for EF = 0.25!
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Fig. 2. Conductance of a 4 layer gated region versus the ap-
plied gate voltage in a (4, 4) armchair nanotube for several
Fermi energies.

4 Conclusions

In conclusion, the rotational symmetry of the tube is an
important factor in determining its transport properties.
Semiconducting tubes are good candidates for making
nanotransistors out of doped nanotubes where we have
observed that gains of about 400 or more can be achieved.
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Fig. 3. Conductance of a 4 layer gated region versus the ap-
plied gate voltage in a (7, 0) zigzag nanotube for several Fermi
energies.
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